学 术 报 告
报告人:徐 江 (南京航空航天大学 数学系)
题 目: Relaxation-time limit in the isothermal hydrodynamic model for semiconductors(半导体等温流体动力学模型的松弛-时间极限)
地 点: 闵行校区 四教113
时 间: 2010年6月10日(星期四)
上午:10: 00—11: 20
摘 要:This work is concerned with the relaxation-time limit in the multidimensional isothermal hydrodynamic model for semiconductors in the critical Besov space. As the initial data are sufficiently close to equilibrium, the uniform (global) classical solutions are constructed by the high- and low-frequency decomposition methods. Furthermore, it is shown that the scaled classical solutions strongly converge towards that of a drift-diffusion model, as the relaxation time tends to zero.
本报告介绍调和分析方法在偏微分方程中的一些应用,欢 迎 参 加!