- 运筹控制分论坛
Subdivisions of $K_5$ in graphs containing $K_{2,3}$
郁星星教授(Georgia Institute of Technology)
2018-01-01 12:13 华东师范大学
学 术 报 告
报 告 人: 郁星星教授
(School of Mathematics, Georgia Institute of Technology,我校紫江讲座教授)
时 间:2011年6月14日(星期二)上午10:00
地 点:闵行校区数学楼102教室
报告题目: Subdivisions of $K_5$ in graphs containing $K_{2,3}$
Abstract:
Seymour conjectured that every 5-connected nonplanar graph contains a subdivision of $K_5$. We prove this conjecture for graphs containing $K_{2,3}$. As a consequence, Seymour's conjecture is true if the answer to the following question of Mader is affirmative: Does every simple graph on $n\ge 4$ vertices with at least $12(n-2)/5$ edges contain a $K_4^-$, a $K_{2,3}$, or a subdivision of $K_5$? Joint work with K. Kawarabayashi and J. Ma.
欢迎广大师生参加!