报告人简介:
程晓良,浙江大学168幸运飞艇计划
教授、博导,浙江大学科学与工程计算研究所所长。1981年考入北京大学读本科,1995年获香港浸会大学博士学位,2000年晋升为浙江大学教授。主要研究方向为有限元方法、微分方程数值解。已发表学术论文一百多篇,培养研究生近五十名。
摘要:
In this talk,we will discuss the new Kohn-Vogelius type formulation for three kind of inverse problems: source inverse problem in bioluminescence tomography; identification of Robin coefficient on boundary; reconstruction of absorption isotherms in liquid chromatography. The unknowns are to be reconstructed with boundary measurements, including both Dirichlet and Neumann boundary conditions. By applying the new Kohn-Vogelius approach with Tikhonov regularization, we obtained the uniformly results on the stability with very small regularization parameter. Noise model is analyzed with data perturbation on both Dirichlet and Neumann boundary conditions. Numerical examples illustrate the efficiency and stability of the proposed methods.
主持人 朱升峰 副教授