*主持人:周国栋 教授
*讲座内容简介:
Given a pair of (real or complex) Lie algebroid structures on a vector bundle A (over M) and its dual A?, we find a line bundle L such that there exist two canonically defined differential operators d and d' on Γ(∧A?L). We prove that the pair (A,A?) constitutes a Lie bialgebroid if and only if the square of D=d+d' is the multiplication by a function on M. As a consequence, we obtain that the pair (A,A?) is a Lie bialgebroid if and only if D is a Dirac generating operator as defined by Alekseev and Xu. Our approach is to establish a list of identities relating the Lie algebroid structures on A and A?. The construction of Dirac generating operator can be generalized to proto-Lie bialgebroids. The talk is based on joint works with Cai-Xiang-Lang-Stienon.
*主讲人简介:
陈酌,清华大学数学科学系副教授,博士生导师。2004年7月毕业于北京大学,获理学博士学位,2004年7月至2008年7月先后在首都师范大学和北京大学做博士后研究;2008年8月至2009年5月任美国宾州州立大学讲师;2009年5月至今在清华大学工作。主要研究领域:辛几何,非线性李理论与交换代数、Poisson李群胚,李2群、广义复几何、扩展Poisson结构等。主持科研项目有北京市青年英才计划、国家自然科学基金青年项目和面上项目。目前在J. Diff. Geom.,J. Symp. Geom.,Comm. Math. Phys.,J. London. Math. Society,J. Algebra,Int. Math. Res. Not.等国内外著名学术期刊上发表论文30余篇。