168幸运飞艇计划

当前位置: 168幸运飞艇计划 > 学术报告
运筹学讨论班 - 分论坛
法国里昂大学教授, 南开大学组合数学研究中心特聘讲座教授曾江学术报告
易英飞教授(Georgia Institute of Technology)学术报告
2018-01-01 12:13  华东师范大学

学术报告

题目:Faulhaber's Formula for Sums of Powers andNon-intersecting Lattice Paths Counting (关于幂和与无交格路计数Faulhaber公式)

报告人:曾江教授
法国里昂大学教授, 南开大学组合数学研究中心特聘讲座教授

摘要:In the early of 17th century Johann Faulhaber computed the sums of powers $1^m+2^m+cdots +n^m$ up to $m=17$ and realized that for odd $m$, it is not just a polynomial in $n$ but a polynomial in the triangular number
$N=n(n+1)/2$. We prove a $q$-analogue of this formula in the general case, which reduces to the Warnaar and Schlosser formulas in special cases and solves an open problem of Schlosser. We will also present a combinatorial interpretation for the coefficients appearing in our formula in terms of non-intersecting lattice paths.

时间:5月 30日下午4:00--5:00

地点:A1510

欢迎参加!
数学系
2005.5.28